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In this paper, we present a detailed calculation of the persistence expérfenta nearly Markovian
Gaussian procesk(t), a problem initially introduced elsewhere [[Rhys. Rev. Lett77, 1420(1996], de-
scribing the probability that the walker never crosses the origin. Resummed perturbative and nonperturbative
expressions fo# are derived, which suggest a connection with the result of the alternative independent interval
approximation. The perturbation theory is extended to the calculatiof fof non-Gaussian processes, by
making a strong connection between the problem of persistence and the calculation of the energy eigenfunc-
tions of a quantum mechanical problem. Finally, we give perturbative and nonperturbative expressions for the
persistence expone(X,), describing the probability that the process remains larger N@aﬁxz(t)>.

PACS numbg(s): 82.20.Fd, 02.50.Ey, 05.40a, 05.50+q

[. INTRODUCTION priori to be well described by this approximation.
An approximation for the distribution of the time-

A natural quantity that characterizes a given stochastigntegrated ~ “magnetization” [13,14, M(t)=t [}
processX(t) is its persistenc®(t), i.e., the probability that X sgn(X(u))du, also leads to good quantitative results for
this signal has kept the same sign up to tim&or a large  gmgoth processes, but suffers from the same conceptual
class of phy5|cal systentéo be defined more _preC|seI¥6be- problems as the A, and is not even guided by physical
LOWI)’ pertSfrt]encde ?_e_caysthas a pc_)v;/er law in tlrtﬁéel;t)~t intuition. Still, the study of this quantity has lead to the in-
or farget, thus defining the persistence exponen troduction of a new quantity, the generalized persistence

This exponent has been studied in experimental systernﬁ?)]’ that is the probability tha¥l (t) remains above a certain

(breath figureq1], a liquid crystal system mimicking the : . . , i
two-dimensional Ising modéP], soap bubblef3], etc), and level M. This quantity which decays with a persistence ex-

by theoretical means through the exact solution of model®0N€nt depending continuously &, has been studied in
[4-7], numerical simulation$8,9], and general theoretical the framework of spin systems and for random walke&.
methodg10—15. Finally, a systematie-expansion, which is exact order by
Most general theoretical methods restrict themselves t@rder, has recently been developed for smooth Gaussian pro-
the study of persistence of stochastic processes that af€sse$15].
Gaussian. This is partly because Gaussian processes areHowever, all these approximate and exact techniques fail
abundant and simpler. Moreover, in many physical situafor processes that are singular, that is for which the density
tions, the study of persistence of non-Gaussian signals can lod zero crossings is infinite. These processes appear in many
effectively reduced to that of Gaussian sigrdl8,12. Thus, physical situations such as nearly Markovian random walk-
given a Gaussian proce¥$t) of zero mean, the basic ques- ers[10] or interface growt{17].
tion is the following: What is the probability that it remains,  In this paper, we come back to the first general method
say, positive up to time? This is a difficult problem that has proposed, that is perturbation theory around a Gaussian and
been studied by mathematicians for a long tifié]. Re-  Markovian proces$10]. After introducing the principle of
cently, however, it has created much interest among physthis method(Secs. 11-1\V}, which shows a deep connection
cists. between the problems of persistence and the energy spectrum
One of the general methods recently introduced to tackl®f a quantum mechanical problem, we present a symmetry
this difficult problem, namely, the independent interval ap-argument for the exact form &f which leads to more gen-
proximation(llA) [12], assumes that the interval lengths be-eral results for the persistence exponédec. \J. These re-
tween zeros of the proce¥$t) are statistically independent. sults also reveal a connection between IIA and perturbative
This sole assumption permits the closure of a hierarchy ofipproaches. In Sec. VI, we extend the perturbative approach
equations leading to an approximate expressior.oThis  to the case of non-Gaussian processes, further reinforcing the
approximation gives very good results for smooth Gaussiatink with standard quantum mechanics. In Sec. VII, we show
processesi.e., processes with a finite density of zero cross-that the various approaches introduced can be applied to the
ings). Unfortunately, it is not clear how this assumption cancomputation of the probability that the signé(t)/(X?(t))
be justified, and whether a Gaussian process can beasaidremains higher than any given nonzero leXgl(generalized
persistence Finally, in Sec. VIII, we illustrate some of the
results obtained in the preceding sections by means of nu-
*Electronic address: clement@irsamc2.ups-tise.fr merical simulations.
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II. IMPORTANCE OF GAUSSIAN STATIONARY T
PROCESSES X'(T)Z—)\X(T)-I-J J(r—7")n(7")d7, (2)

The most popular examples of persistent systems have
been taken from the field of coarsening dynamit8]. For  \yhere 7(7) is a Gaussian white noise satisfying
instance, let us consider an Ising spin system after a quen h7(7.) n(7'))=5(7—7'). Indeed, this equation must be lin-
at very low temperature from a high temperature (_jisordere%ar to preserve the Gaussian property, and the coeffisient
state. Domains of positivessentially+ 1) and negativées-  of x(7) must be constant to preserve stationarity. The last
sentially —1) magnetization grow with a time-dependent (grm of Eq.(2) accounts for memory effects, involving a
typical length scalé (t)~t*2 For this system, the spin per- memory kernell, and must take the form of a convolution
sistence, that is, the probability that a spin has never changgfoduct, again to preserve stationarity and the Gaussian
sign, or has never been crossed by an interface, is known t§gperty (linearity). Note that it is not necessary to involve

decay ag~’, with 6= in d=1[5], and#=~0.22 ind=2  hjgher derivatives ok in this equation of motion, as they

[8-10. _ _ _ _ _can be accounted for by a proper choice of the kedrisee
Due to dynamical scaling, the two-time spin correlationgq. (6) below.
function only depends on the dimensionless ratit af both The Markovian case is associated withr)=&(7) (no
considered times: memory effecty so that the equation of motion becomes
(S()S(t"))y=Ff(L(t)/L(t")). D X' (1)=—AX(7)+ 5(7). )

This property will be characteristic of a coarsening system;The velocityX'(7) only involves the noise at the same time

and relies only on the existence of a unique dynamical lengty, For such a Langevin walker, the two-point correlation
scale and the dynamical scaling hypothesi8]. Now, if  function is simply

L(t) behaves as a power law for large times, all two-point

correlation functions are then functionstét’. By consider- exp(—\|7])
ing 7=In(t), these correlation functions are then functions of X(nX("))y=Ff(r—17"), f(r)= ,
expg 7|, or more simply|7— 7’|, so that they become sta- 2\
tionary in the fictitious timer.

Moreover, in many physical systerfis0,12,19, the ques-  For convenience, the correlat@nd the variabl&) has been
tion of computing the persistence for the original dynamicalnormalized such that’(0*)=+3, and, from now on, this
variable[ S(t) in the above examplecan be reduced to the Will be assumed for all correlators. This will ensure that
study of the persistence of a Gaussian variak{€). One
possibility is, of course, that the physical variable is a Gauss- 0 (w)—1 when w— *o. (5)
ian variable itself: this occurs in the study of the persistence

of the diffusion equatiopl12], and for the total magnetization Also note that this Markovian correlatas a cusp at the

Eerasfcence of a spin system que_nched'atTC [20], or T origin. We will define anearly Markovian Gaussian process
=T, (in the latter case, the persistence exponent is a new

o . . . ~as one with a correlator which satisfy the above condition
critical exponent19]). But in some other cases, including ®)
the Igmg and more general(N) spin systems, the original In general, the knowledge of the two-point correlation
persistence can be shown to be very close to that of a truﬁmctionf( ) is equivalent to that of the equation of motion
Gaussian process(t). For instance, a local spin in an Ising n q e q '
. . .as the Fourier transform dfsatisfies
system behaves essentially as the sign of such a Gaussian
processS(t)~sgn(X(t)), an important result which was first R
used within the Ohto-Jasnow-Kawasaki thef2¢] (also see - NS [3(w)]?
Ref.[18]), and later more precisely formalized by Mazenko flo)=(X(@)X(~w))= PEERY S ©®)
and co-worker$22] (also see Refl18]). To summarize, we
underline the special role played by Gaussian processes, and R
will thus restrict our study to this kind of process. This actually shows that any correlatbfw) can be repro-
The next important remark is that if the persistence of theduced by a propenot unique choice of the memory kernel
considered Gaussian proces&) decays as ™ ?, the persis-  J.
tence in terms of the fictitious time (for which this process In Secs. Il and 1V, we will give a more extensive account
is stationary is expected to decay exponentially as of the perturbative expansion fa; in the case of a nearly
exp(— #7). Thus, in the following we restrict ourselves to the Markovian Gaussian stationary process, a calculation which
study of persistence for a stationary Gaussian prog¢sy  was first introduced in Ref.10], and then reproduced in a
[23-26. Note that ifL(t) does not behave as a power law of real time formalism in Ref.11]. This will be followed(Sec.
time, the persistence still decays as a power lal@) as V) by a resummation of this perturbation theory using a
soon as dynamical scaling is satisfied, and the proper fictigeneral symmetry argument, and the discovery of an intimate
tious time is simplyr=InL(t), for which the procesX(7) is  connection between the IIA and perturbative methods. A
again stationary. nonperturbative expression fat is also presented, which
The most general equation of motion for a stationaryhappens to reproduce quantitatively most numerical results
Gaussian walker reads (Sec. V).
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lll. PERSISTENCE: MARKOVIAN CASE whereE, andE; are the ground state energies of these quan-

Let us now move to the problem of persistence. The prob'-[um systems. By direct identification, we thus find that

ability that a given walker remains on, say, the positive side 9=E,—E,. (13)
of 0 at all times between 0 angl is
Moreover,Eq=N\/2, and it is easy to convince oneself that
J DX(7)exd —S] the ground state wave function if;, is the first excited state
X>0 Zy of Hy restricted to the positive axis, so thaf=3\/2 (this
P(B)= - Z_o’ (7) argument is very general, and only relies onxthe —x sym-
f DX(7)exd —S] metry of the potential We finally find thatd=\ for a Mar-
kovian process. This is a well-known fd&3-26, that can
where be simply illustrated for the usual Langevin Markovian
walker, for which the equation of motion readis actual
L (B[P time t) dx/dt=#(t). For such a random walk, the persis-
S(BAX(T)}) = Efo fo X(71)9(11— 1) X(72) d71d 7, tence exponent is known to Be[23-26. Let us reproduce
®) this result within our approach. The two-point correlation
function is easily computedx(t)x(t’))=min(tt’), and the
is the Gaussian weight associated with the trajeckfy),  normalized variableX(t) =x(t)/\{x(t)?), has a correlator,
andg(r,— 7,) is the inverse of the correlation matriXr,  (X(Y)X(t"))=(t’/t)*2 for t=t'. This correlator is a func-
—1,). @ is then calculated fronP(B) by taking the limit  tion of the ratio of the two times, so that it is stationary after
the change of variabler=In(t), becoming(X(7)X(7"))
6=— lim B lnP(pB). (9) =exd—3|7—7|]. Applying the above calculation, we re-
B— -+ cover the resulf=\=3.

Wg can impose periodic bo_undary conditions for the walker V. PERTURBATION AROUND A GAUSSIAN
trajectories X(0)=X(B), which should not affect the value
- LN - . MARKOVIAN PROCESS

of 6 in the limit of large 8. Indeed, in practice, the process
will have a finite typical correlation time, equal 10 * in the Of course, this heavy machinery is not introduced to deal
example of the Markovian walker, so that this extra con-with the well understood Markovian case, but rather to be
straint cannot affect the large time persistence regime. applied to the case of a nearly Markovian walker, for which

The path integrals of Eq7) strongly suggest the connec- no result exists. Thus, let us consider such a walker for
tion of this problem to Feynmann integrals in quantum me-which
chanics or statistical field theory. Let us make this connec-

tion more precise. Because of the periodicity of the 1
trajectories, the Gaussian weight in Ef). can also be writ- f(7)= ﬁ[eXp(_MTlH o(7)], (14)
ten
where ¢(7) is assumed to be a “small perturbation” to the
1 = Markovian correlator. In Fourier space this can be written, to
5=55 2 Gl X(@n)l?, (10)  first order in¢,
n=0

. . g(w)=f(w) '=0?+\*~h(w),
whereg(w,)=1/f(w,) (the kernel in the expression 6fis
diagonal in Fourier spageand w,=2mn/B are Matsubara R (w?2+22)2.,
frequencies. First consider a Markovian process for which h(w)= T¢(m). (15
g(w)=w?+\? (the Fourier transform of f(7)

=exp-N)/2\ is [0®+\?]7Y). S can alternatively be |n the general case, the denominalty of Eq.(7) can be

written as
=1 fﬁ dX
T2 0 dT

1 [+= N
We recognize the action in imaginary timg (is then an Eo:—z—f In(0?f(w))do. (16)
inverse temperatuy@f a harmonic oscillator of frequenay. mJo

The periodicity of the paths ensures tha¥,

exactly computed, as any unconstrained Gaussian integral,
and is proportional to d&ff(r—))]. After taking the
dr. (11)  proper limit,Eqg= —Iimﬂﬂﬂﬂ‘llnzo(ﬂ), one finds

2
+\2X2

Note that this integral converges thanks to the relation ex-

=Tr exp(—BHy)] is then the partition function of an har- . _ . .
monic oscillatgr, andz, = Tr{exp(— BH)], is the partition presseq in Eq(5). To be consistent with the perturbatlve
function of the same harmonic oscillator, but with an infinite XPansion foiE, to come, we can writé, up to first order

wall at the origin(as the particle is constrained to remain on'n ¢
the positive axis For large time, the persistence behaves as

P(B)~exd —B(E1—Eo)], 12

_)\ 1 o 2 Ay 2
Eo=5~ Zmn ), (@ TN)$(0)dot0(¢%), (17
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the first term being the previously discussed Markovian re- 1 (+», .
sult: that is, the ground state energy of an harmonic oscillator O=N— %J V(w)p(w)dw+0(¢?). (24)
of frequency\. The computation oz, (or E;) is still a 0

formidable task, as the domain of integration of the Gaussian . _

integral only involves positiveX(7), for all 7. The natural  The kernelV is defined by

impulse is to writeS= Sys.t+ 85, whereS s is the harmonic

oscillator action associated with a Markovian procgssg. - (w?+2?)?
(1)}, and, V@) =——

+ oo

8
K&(w)+

4jc; 1
j=1 w2+4j2)\2 w2+ N\2|
(25

B (B
08= _%jo J; X(r)h(1i— 1) X(72)d7md7,,  (18)  As noted in Ref[11], this cumbersome expression in terms
of Fourier transforms has a remarkably compact form when
expressed in the inverse Fourier space. Indeed, the function

1o 5 between brackets is just the Fourier transform of
=== 2 Aoy X(wy)? (19 : ’
ZB n=0 o
1 ) 1
where the Fourier transform dfis given in Eq(15). 8S is Uln =y J.ZO ciexp(—2jA| 7)) — 5-exp(— 7)),
linear in ¢, and can be considered as a small perturbation to (26)

Sosc- We can now use the standard first order cumulant ex-

pansion of quantum mechani¢sr statistical field theoty — with c,=4/m, so thatV is the Fourier transform of (1/

leading to 2\)(— %+ \?)2U(7). This allows us to recast the preceding
result into the form

3\ )
E1:7+ I|m <5S>Wa||+ O(¢2), (20) 1 +oo
Bt azx—ﬁj B(7)(— 2+ 222U (1) d7+O(¢?).
0
where the average is to be taken using the Boltzmann weight (27

associated with the harmonic oscillator of frequengywith _ _ . ’ .
an infinite wall at the origin. Let us denote ) the eigen- A Simple manipulation on the;’s (see Appendix Aallows
states of this quantum systefas opposed tdl), the eigen- ON€ to resum the series-@<+\“)“U(7), exactly, finally
states of the unconstrained oscillatoassociated with the €éading to
eigenenergies g, =((21+1)+1/2N=(21+3/2)\ (I1=0). N
One can then write 0:)\{1_ ?fo ¢(7-)[1—exp(—2)\7-)]3’2d7-} +0(42).
JN N R +oo (28
<O|X(_wn)x(wn)|o>=f 2 coswnT
° We can generalize this expression when the constraint on
re X(7) is X(7)=X,, instead ofX(7)=0 [13,27]. Indeed, for
x>, (O[X|T)|2e"17207d7.  (21)  the Brownian walker[f(7)=exp(|7/2), such that(X2)
1=0 =f(0)=1], it is known (see Sec. VIl that ¢ satisfies
. D,4(Xo)=0 [27], whereD,, is a parabolic cylinder func-
[(O[X|T)|? can be computed for the harmonic oscillator with tion. We can expand this expression for smégJ| leading to
a wall, using the fact thaix|T) = y2(x|2I + 1) for x=0, and  gg,guniar= 1/2+ Xo/ V27 +O(X,)2. If we perturb around a
exploiting standard properties of Hermite polynomials. Thegeneral Markovian proceséf(7)=(1/2\)exp(—\|1))), we
complete calculation is performed in Appendixes A and B.then obtain another perturbative contribution for the expo-
The final result reads nent # (valid in the limit of small Xy), which should be
added to the result of E8):
A ~ ~ 8 wp = 4JCJ
<0|X(—wn)X(a)n)|O>:F§( )+

SR 56(Xg) =2\ %o +O(X)2—)\3’22X0+O(X)2
(22) 0 2’7T<X> 0 \/; o) -

the Dirac peak coming from thle=0 term. The coefficients 29

c; involved in this relation read
V. RESUMMATION: A SYMMETRY ARGUMENT
4 (2t \2 A. Resummation in time
Cj = PY 1(2i—1 . (23) . . .
722 (2j+ 1)1 11 (2]-1) Consider a Gaussian process of correldtand persis-

tence exponend. Let us assume that we have been able to
Finally, the sum oven in 6S becomes an integral in th@  resum all terms of the perturbative expansion which contain
— +oo limit, leading to the final expression f@r=E;—E: only one time integral. Very generally, one can thus write
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+oo density of a charge distribution evolving according to the
GZJ A(f(7)/f(0),7)d7. (30 simple diffusion(or hea} equation corresponds to this case
0 [12]. As we have argued in detaiy=1 corresponds to
The variablef (7)/f(0) appears due to the fact théshould ~ nearly Markovian processes. Finally, other valuesusf2
not depend on the correlator normalizatifinere f'(0%) correspond to singular _Walk_ers f(_)r which the fractal density
— T 1/2, butf(0)=1 was chosen in Ref§11,17]. of the set ofX=0 crossing times is T ul2. Such processes
If f(7) is changed intdf(a7), it is clear that the persis- have.been encountered. in the_ study of out qf equilibrium
tence exponent is simply changed ini@. Using this re- atomic surfaces, for whiclX(t) is the local height of the

mark, we obtain, substratg17].
A nice consistency check consists of showing that the first

+oo term in Eq.(34) is equal to\, the Markovian value fom.
af= fo A(f(ar)/f(0),n)dT, (3)  This is simply done by performing an integration by parts
using the explicit expression &, leading to

which shows, after a simple change of variable, that, for any

process and ang, one must have 0 _2_)\f+°c (A7)%e M d_r_ B 2_)\ 1 Inu g
B Markov™=""" | | (1-e 27132 7 T oon 0 (1—u?)3?2 u
0:J A(f(7)I(0),7/ ) d7la?. (32)
0 2N (1 du N (39
This strongly suggests th@tcan in fact be written as ™ Joy1-u®

+o dr the last integral being obtained through another integration
0=f B(f(r)/f(O))—z. (33 by parts.

0 T The argument presented above was motivated by the fol-
lowing important remark: for a given correlathrthe pertur-
bation ¢, or equivalently, the function exp{\|7)/2\ around
which the perturbation is started, is actually quite ill defined.
If we knew the complete perturbation expansion, starting
o dr o dr from_any value of)_\ we should obtain the same result. Note
ng B(exp(_)ﬂ.))_Jrf H(7)B’ (eXp—\7))— that in standard field theory, one usually perturbs around a

0 7 0 ' system which is solvable for a certain valussually Q of the
coupling constant: there is a unique way of performing the
perturbative expansion. Thus it is natural to ask whether
there is an optimal choice for the starting valuexofA very
natural choice is to take fox the value which cancels the
(28), leading to first order perturbative term. In other words, we take the

“best” starting Markovian correlator such that the first order
X2 contribution vanishes. This gives another nonperturbative ex-
(35 pression for# (that we may call “variational” or self-
consistent perturbatiyewhich must satisfy

Assuming now thatf(7) is close to a Markovian process
with an associated smaib(7), one can develop Eq33),
leading to

+0(¢?). (39

In this perturbative limit, Eq.34) should coincide with Eq.

2
Bilexp=X)=-2 (1—exp-2X)3?’

or, after making the change of variahle= exp—X,

fm (It —exp—67) (40)

2 In(u)2 0 [1_9XF(—207')]3/2

B (U):_;(l——uz)?’/z. (36)
This equation always has a solution, as the expression in Eq.
For the integral equatiof83) to converge, one should have (40) is clearly positive forf— +«, and goes to-% when

B(1)=0, finally leading to the final result of E(B3), with B 09— 0. The expression in Eq40) is defined for any.> 1, in

given by fact a larger domain than the fully resummed formula of Eq.
(37).
In?(v) Note that we can write the resummed expression in a
B(u)= —J’ (1= v2)3’2 (37 similar form,
Note th'at this expression .is not only defined for a nearly f+oc[B(f(7-)/f(O))_B(eXF(_67-))](]7-:0, (41)
Markovian process, for whichhas a cusp at=0, but ac- 0

tually converges for any process, for which

which after integration by parts, takes the form
f(7)/f(0)—1~|7|* when 7—0, (39

for any u>2 [asB(1—&)~&%?]. Smooth processdwith a
continuous velocityare associated witp =2, and the local

J+oo K[f(7)/f(0),exp 67)] -0 (42)

0 (1—f3(7)/f2(0))%?
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where the precise form of the known kern€lis of no real +oo "
interest. This last remark allows us to make a link with the 0= JO D(0f(w))dw. (49
[IA result. Within this scheme, based on the approximation

that the intervals between the zeros of the process are indgqte that this property is shared by the exact and general
pendent, it can be shown for smooth procesges 2) thaté expression oE,, given in Eq.(16).

must satisfy{12] [with the normalizatiorf (0)=1] Now, one can consider a nearly Markovian process, for
which the correlator satisfies E@L5). One can develop Eq.
o 20 [+ - (49) up to first order ing and identify the result to the
1- 20=70) 1+ — o exp(f7)sin “(f(7))d7|=0. perturbation result of Eqg24) and (25). The calculation is
(43) elementary, and leads to

If one integrates by parts this expression twice, it takes the 4 . 1 [+ R
following form: o=— f-Y20)+ EJ W(0*f(w))dw, (50
0
oo [f"(1—f2)+ff'3(7) .
f exp(07) EYINCT dr=+—2f"(0). . Ch
0 (1—-f5(7) W(x)= >, Fln(1+4n2(x’1—1))+ln(x). (51)

(44) i=1

This expression now looks to be of the same type as the oneghe first term arises from théterm in the kernel/, and can
found within the perturbative approach. However, its domain, s pe written as (8#)[3”6(w|f(w)|1’2)dw. Again, it is

of definition remains strictly.=2. , , easy, using relations given in Appendix A, to check that the
Finally, let us mention that when the constrainov) is  narkovian valued=\ is recovered for the Markovian cor-

X(7)=Xq [13,27) instead ofX(7)=0, the following pertur- N TN i .
bative correction should be added to the preceding expre£?lat9rf(w)_(w A7) . Note finally tha@ this pro.ced'ure
permits the recovery of the exact expressiorEgf which is

sions foré [see Eq(29)]: _ .
produced by the last Ix{ term in the kernelW.

2%, i VI. PERTURBATION AROUND A NON-GAUSSIAN
50(Xo) = 0(X0=0)m+0(xo) : (45) MARKOVIAN PROCESS

When writingS= S, + S, we deliberately chose to per-
B. Resummation in frequency space turb around a Gaussian Markovian walker, or around the
e%L_Jantum action of an harmonic oscillator in terms of the
pseudoactiorss. This is quite arbitrary, and in principle the
action of any(preferably solvablequantum system would
have worked. The stochastic process associated to such an
action [each trajectory {X(7)} being weighted by
exp—(S[{X(7)}])] is Markovian but, in general, non-
) Gaussian, as the only Gaussian quantum action is that of a
P harmonic oscillator.
o= Jo Ci(w),0)do. (46) So, in this section, we consider a stationary stochastic
processX(7) of any kind, associated with the weight or
We still assume thaft has a finite derivative in 0, keeping  pseudoactios, and a quantum mechanical system for which
the normalization &'(0*)|=1. the action isSq (Q for “quantum”). This quantum system
If f(7) is changed intd(a7)/« (to preserve the normal- could be a harmonic oscillator, a particle in a square box, and
ization), f(w) is changed intgf(w/a)/a{ and it is again more widely, any system preferably solvable for the actual
clear that the persistence exponent is simply changed intBerturbative calculation to be tractable.
« 0. Using this remark, we obtain: Then, settingS=S5+ S, and reproducing exactly the
calculations of the beginning of Sec. IV, we end up with the
following perturbative expression fd:

The same argument as above can be applied to the expr
sion of # in frequency space. This time, this will allow us to
resum all terms in the perturbation theory involving only one
frequency integration. Again, we assume thatan be writ-
ten

+oo R
a0=f Cla *f(wla),w)dw, (47)
° 9=EQ—EQ+ lim [(68)1—(3S)o]+0(852), (52)
which shows, after a simple change of variable that, for any Botee

process and any, one must have where EOQ (respectively,E?) is the ground state energy of

the unconstrainedrespectively, with an infinite wall axX
+ oo
- -27 =0) quantum system.)o, and( ), denote quantum averages
o jo Cla™H(v),aw)do. (48) performed using the Hamiltonian of the quantum system,
without and with the infinite barrier at the origin, respec-
This again strongly suggests théatan in fact be written as, tively.
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We have already implicitly used Ed52) in Sec. IV, For a given correlatorf(w), it is not clear what the
whereSg was chosen to be the Gaussian quantum action ofjyagt” starting value fork, (or for the box sizeb) is. Let us
a harmonic oscillator. Let us now illustrate E§2) by taking propose two natural choices. We can tdesuch that the
a non-Gaussian system as the starting quantum system. Tfiest order perturbation vanishes, which leadséte 3k§/2.
simplest possible example is that of particle in a box, Wth An alternative choice is to takie, such that, is minimum,
restrained to the intervdl—b,b]. We now use this simple as it can be shown th&,;(k,) has always such a minimum

non-Gaussian system to compute approximately the value @by a finite k,. In fact, the variational inequalitf ;< 2k2
0 for a Gaussian process associated with the Gaussian We'gmlimﬁ_,+x<58>1 is exact for anyk,, which intuitively vali-

S defined in Eq(8).

Let us call|l) (I=0), the eigenstates of a quantum par-
ticle in the box[ —b,b], associated with the eigenenergies

dates this choice ik,.

g)=3k3(1+1)?, with ko= 7/2b. The eigenstates of the con- VII. GENERALIZED PERSISTENCE
strained systena particle in the boxq 0b]) are the |T>
=2|21+1) (1=0). To evaluaté 6S); —(5S),, one essen- So far, we have essentially considered the probability that

tially needs to compute (O|X(—w,)X(w,)|0) and the signalX(r) has never changed sign. In fact, it seems
(O|X(— wn) X(wy)|0). This is a straightforward task using natural to study the more general probability that the signal
identities similar to Eq.(21), where the scalar products, always remains above a certain levg). WhenX,#0, this

(0|X|1) and(0|X|T) are even easier to compute for a particle defines theXy-level persistence. This generalized persistence

in a box(see Appendix B Introducing has already been introduced for the simplest Markovian
Gaussian walkef27] and spin systemfl3]. Moreover, at
256 < ajb; least in the framework of the Mazenko approximatj@2],

there is a connection between the persistence ofjtRetts
(53) model [5,6,9 (the probability that a given site always re-
mains in a given phagend theX,=F(q) level persistence
with of a certain Gaussian variabj28].
Let us take the example of the Gaussian Markovian
o 2(j+1)? walker, associated, within our formalism, with the action of a
j_(2j +1)4(2] +3)4 harmonic oscillatorE;(Xg) is now the ground state energy
of a harmonic oscillator with an infinite barrier «,, for
and which the eigenstates can be expressed in terms of a para-
bolic cylinder function[27] (generalization to a continuous
b. :E(Zj +1)(2j+3), (54) index of Hermite polynomiajs E; is then implicitly defined
12 by imposing that the ground state eigenfunction has a unique
node atX=X,. If we come back to real timé=expr (see
Sec. ), Xy-level persistence for the Langevin walker satis-
fying dx/dt= 5(t) is defined as the probability thaft) al-
K 1 M( K(w) )d ways remained greater thaf(x?(t)) =X, t. This decays
= w

k(wn) =(OIX(=wn)X(wn)|0)=— 2 it of'

we obtain the following expressions f&;, andEy, (0=E;
- Eo)

Eo= 5 + py= —1 (55  as a power law of time with expone#i{X,) =E;(Xq) — Eo.
0 \f(w) If we were to compute th&,-level persistence exponent
0(X,) for a Gaussian process using the perturbation theory
formalism, we would have to evaluate scalar products like
, w1 12 (0|X|T), where|T) are the eigenstates of the harmonic oscil-
Ei=2ko+ @ko W(O)_ 15— 72 (56 |ator with an infinite barrier alX=X,. Unfortunately, this
0 seems to be an analytically untractable problem. However,

and

1 (el 1 1 using the formalism of Sec. VI we only have to evaluate
+_f (A_—A_) R(w/4)dw. (57) brackets involving eigenstates of a particle in the box
32m)o \f(w) k() [Xo,b], which are explicitty known. The calculation is

straightforward(see Appendix B and leads to

E1(Xo) 26 L )2(
1(Ro)= 5 +55 7
(1-m)? 32°

1 12
|

K}H(0) 15— a2

Ko(l—m)*r+=[ 1 1 . ,
+ 327 fo (f(w)_k(a)))k(w(l_n) /4)dw, (59
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where 7=X,/b, andk has been defined in E¢53). As a  Wherehiis the local height of the fluctuating interface, and

check, we can see that fgr=0 (i.e., the wall is at the origin IS Gaussian white noise. The equation being linbéx,t) is
we recover the result of E(7), and for p=—1 (i.e., the @ Gaussian variable, for which we take the initial condition

h(x,0)=0. To define the first passage problems of interest,

wall is at X,=—b, which corresponds to no effective con- consider the quantity

strain), we recover the expression f&g of Eq. (55). Again,

for a given procesX and a given leveK,, ko can be fixed P(tg,t)=Prolfh(x,s)#h(x,ty) Vsitg<s<ty+t],
by imposing that the first order perturbation termérvan- (63
ishes, or by taking the value &, for which E;(Xg,ko) is
minimum. and defined, and 65 as
Po()=P(0)~t"%, t—+ee, (64)
VIII. NUMERICAL SIMULATIONS
T __+— 6
We now illustrate the various analytical results obtained pS(t)—tollnle(to,t) U5 ot (65

in the preceding sections by means of numerical simulations.

po measures the first passage exponent of the growing inter-
A. Nearly Markovian processes face, whereapg contains the relevant information when the
interface has entered the steady stage+(+ ).

ﬁAS aIreadyhmirltlgn]?d mtﬁecr.l_l,r?tlocal Iswtlg spdl_n ev(;nlvmdg The correlators associated with these two persistence
arter a quench at =0, from the high temperature disordered ;5510 mg ardgwhen expressed as functions of the fictitious
phase, essentially behaves as the sign of a Gaussian varia fhe 1) [17]

Mazenko approximatiof22] then permits the calculation of

the two-time correlator of this Gaussian process. It happens fo(T) = cosh 7/2)*— |sinh( 7/2)|*, (66)

that, in one dimension, this approximation recovers the exact

expression of S(t)S(t")) [18], leading to the following form fo(T)=cosh ur/2)— % |2 sinh(7/2)|#, (67)

of the correlatorf when expressed in the fictitious time

=In(t): respectively, and both satisfy-1f,(7)~ 7#, for small r,

with u=1-d/z (u=1—(d+2)/z for a volume conserving
f(7)= / 2 . (60) noise. We now simply treaju as a free parameter. Using a
1+exp(7) connection to the fractional Brownian walker, it has been

conjectured thats=1— u/2 [17], which has been confirmed

The exact value of in d=1 is §=3/8=0.375[5]. The by numerical simulations. , .
“variational” and resummed perturbative expression of Egs. Let us take two typical values fqu. For u= 3, we find

(40 Oovar=0.208 ... and fgpe=0.214% . . ., which compare
) and(33)—(37), respectively, lead t6,,,=0.35% . .. and well to the numerical valu@,=0.201+ 0.005. For the case
fper=0.3677 . . . . Theprocess associated with the correlator Of the steady interface, the conjectured persistence exponent

given by Eq(60) has been actually simulated using the Fou-iS 6s=3, in good agreement with the simulationgs(
rier space form of Eq(2). We have obtainedd=0.355 r_eeg.szc)ii(l)yoggz;ﬁé?élatgi)\?ii!gand:%eggg ative arggtzods are
+0.005, in extremely good agreement with the theory. The ’ svar . s.pert

small discrepancy with the exact result 0.375 for the Isin :.O'ZGfA?E' ' .2.8Note ttrllat the grst or?her per';url?atiodn e>|<prefs-
model is attributed to the fact that the actual process suc lon of Bq.(28) exactly reproduces the conjectured value for
that S(t) =sgn(X(t)) is not strictly Gaussian. However it 3
seems that this non-Gaussian effect is rather small.

We have also tested our theoretical expressions using
correlator introduced in Ref10]:

We have also tested the cgge= 3, which is dangerously
close to the limit of the validity domain of our variational
Guya=12) and perturbative fper=5) expressions. The nu-
merical value off, is 8;=0.85+0.01, for which the varia-
f(7)=2exp(— 1)+ Zexp(—27). (61)  tional approach gived, ,=0.88%. ... Not surprisingly,
the resummed perturbation leads to a bad resaif,d;
We found 6,,,=1.48% ... andf,,~=1.48@...,again in ~1.1). The conjectured value fdk is 6s=0.625, while the
good agreement with the numerical res@it 1.481+0.005.  simulation of the process leads fig= 0.625+ 0.005, and that
of the associated discrete solid-on-solid model lead#to
B. Other singular processes =0.635+0.005(see Ref[17] for detaily. We find a quali-
tatively correct value offg,,=0.66& ..., but the re-

Interesting examples of singular correlators wjih<2 summed perturbation fails agaifoer~0.84).

and u#1 (see the definition ofu in Sec. ) have been
introduced in the framework of dynamical surfaces described

by the time-dependent equatifh?] C. Smooth processes
For singular processesu&2), it was not possible to
@z —(=V2)Ph+ 4 (62) compare our variational and perturbative results to the IIA

at expressions of Eq$43) and(44), which are only defined for



1266 SIRE, MAJUMDAR, AND RUDINGER PRE 61

smooth processes. One of the most spectacular examples tbhien extended the perturbative approach around a Markovian
smooth Gaussian processes has been given i Bdf.con-  process, introduced in Refl0]. We have obtained re-
sider an initially random spatial distribution of charges of summed perturbative expressidigs. (34), (37), and(51)]
zero averagep(x,t=0). It then evolves according to the and a new self-consistent perturbatit@ variational ex-
simple diffusion equation, pression for the persistence exponig. (40)]. It seems that
this variational result is more effective in reproducing nu-
merical results, sometimes with impressive accuracy. We
have also shown that all these expressions take a similar
form as the alternative result of the IIA, which only applies
The perSiStence is defined as the probablllty that the |OCQb smooth processes. We have also given perturba‘[ive ex-
charge at a givem never changes sign. It decays as a powelyressions for theX,-level persistence exponefEgs. (29)
law, definingdy, the dimension-dependent persistence expoand(45)]. Finally, we have shown that this type of perturba-
nent. tive approach is even more general, as the starting process
The 1IA [12] (as well as the specific method of REf4])  around which we decide to perturb can be any Markovian
is in amazing agreement with numerical simulations. For inprocess associated with @referably solvable quantum
stance, ind=1, 6,,=0.128 ..., to becompared to the problem. We have illustrated this point by explicitly deriving
numerical valueg=0.1207=0.0005. The agreement seems a variational expression for th¥,-level persistence expo-
to be of the same order in any dimension. Smooth processefent, when the starting quantum system is chosen to be a
are in principle beyond the range of application of perturba-partide in a bounded bopEgs. (55), (57), and(59)].
tive methods. Still, the variational approach remains qualita- Finally, we conclude by pointing out that our perturbative

J
é—lt)(x,t)szp(x,t). 68)

tively correct, leading t06,,=0.1428... for the one-  and variational techniques have been useful in a wide variety
dimensional diffusion equation, whereas the resumme@f problems. This includes the calculation of the survival
perturbation theory is again quite bad,g=0.1612. . .). probability of a mobile particle in a fluctuating fiel80], and

Another example of smooth process is the Gaussiathe calculation of global persistence exponent in critical spin
walker satisfyingd"X/dt"= 7(t), forn=2 (n=1 being the  systemgto compute the order?=(4—d)? perturbative cor-
Markovian Brownian walker which is singularThe casen rection[11]], and for directed percolatiof81].
=2 corresponds to a particle submitted to a random force,

for which the persistence exponent is known todises [29]. ACKNOWLEDGMENTS
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The 1A leads to 6,,=0.2647 ..., whereas 6,
=0.285 ..., andfpe=0.318 . . .. APPENDIX A
D. Perturbation around the action of a particle in a box We want to compute;=|(0|x|])|?, where[j) is the jth
Let us briefly give a few applications of our expressionse'genStaFe, of the harmonic oscillator with an infinite barrier
of Egs.(55), (57), and(59). at the origin,
As a simple test, they have been applied to the case of the 2
Markovian walker withx = =3, and X,=0. The “varia- (i|x>= ﬁ(zj +1|x)= H2j+1(X)e_X2/2.
tional” approach, which consists of taking the size of the \/22j+1(2j +D)!'m
box (or ko) such that the first order perturbation vanishes, (A1)
leads to #,,=1.0074.... For thecorrelator given by , X )
Eq.(61), we found 6,,=1.433 . . ., infair agreement with 1€ extra factory2 is due to the fact tha¢j|x) is only
simulations and perturbative approaches around a Markoviafiefined on the intervgl0; + <], but should still be normal-
process. ized. One then finds
Finally, we have tested E@¢59) in the case of the Brown-
ian walker (for which A=3), for X,#0. In this case, it is co= 4 12 (A2)
known thaté satisfiesD, ,(X) =0 [27], whereD,, is a para- Pomodje
bolic cylinder function. ForX,=3 [comparable to(X?)
=f(0)=1, for A=3%], we found 6,,=0.702 ..., to be wherelj=fg°°x2e*X2H2j+l(x)dx can be readily calculated,
compared to the exact valug=0.644 .. .. Note that the using the propertiesH, . 1(X)=2xH,(x)—2nH,_1(X),
perturbative expression of E@5) leads to4=0.633 . . .. H/(X)=2nH,_1(X), andfé“e*XZHn(x)dx=Hn,l(O). This
yields
IX. CONCLUSION (2j)!
In this paper, we have stressed the importance of studying i~ H2i(0)+4/H2j-5(0)=(— 1)”1][(2]—_1)’ (A3)

persistence for Gaussian stationary processes, as the calcula-
tion of # for many physical systems can be often mapped onwhich finally gives the result of the main text.
the persistence problem for this kind of process. We have Thec;’s satisfy the recursion relation
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Cj+1_ (Zj_l)z
¢ (2j+3)(2j+2)’

(Ad)

which shows that the generating functidx) = E+ oC;j X!
satisfies the hypergeometric differential equatxm x)f”
+3f'—1f=0. The(unique solution withf(0)=cy=4/7 is
given by

4 1 13
f(x):;F(_E’_E’E’X)’ (A5)

which yields the identitiess;“oc;=f(1)=3 and = jc;
=f'(1)=73.
Now definingU(7) as in Eq(26), we obtain,

2 =

1
(92 2\2 - . —2j
oy (—EHNDU(n) = JZO Ciexp(—2j\| 7))

)\2
= Slexp— 2| )]

(A6)
whereC;=(4j2-1)°c; satisfiegusing Eq.(A4)]
Cioy i+3
C, j+1° (A7)

We recognize the recursion relation obeyed by the coeffi-

cients of the series expansion of the functi&x)=(4/
) (1—x) %2 which leads to the final result of E®8).

APPENDIX B:

In this appendix, we write the general equationEgrand

E;, when the perturbation theory is applied §e= So+ 5.
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where

k(wn) g (wn) <0|X(_wn)x(wn)|o> (B2

+ oo

+ oo
=j 2 cosw, 7>, |(0[x|1)|2e~(c17¢0)7d 7
0 =0

+ oo

2d,m?
= , B3
;l d|2+ wﬁ ( )

with d;=g/—&¢, m=[(0[x|I}| (mg=0 due to the sym-
metry of the potential Note thatk is nothing more than the
Fourier transform of the two-time correlation function of the
position of the considered quantum particle.

Then, transforming the sum over Matsubara frequencies
into an integral, one obtains

E [k 1|d (B4)
=g —— X.

AP f(x)

Due to the sum rul&,"*2d,m?=1, valid for any Hamil-

tonian, the integrand tends to 0 ms-+«. In the text, we
have considered two examples for the starting quantum cor-
relator k: The harmonic oscillator of frequency, e,
=A(1+3), d=xl, m=(2\)"Y25,, and k(w)=(w?
+A?)~1, which directly leads to Eg(17), obtained in Sec.

IV by expanding the exact result of Hd.6); and the particle

in a box of width D= n/kg, s|=%k§(l+1)2, and d,

= %kgl (I+2). After an elementary calculation involving the
eigenstates of a particle in a box, we obtain,

A(1+1)
m|:[1 (_ )]7Tk |2(|+2)2:
_ 26 aib
k(w) - (B5)

2 41,2
m° =0 kObj+

with

o 2(j+1)?
AT it )i2j 1)

1
bj=5(2j+1)(2)+3).

Sq is assumed to be the action associated with the quantum (B6)

HamiltonianH,, with eigenenergies, and eigenstatef ).

The associated Hamiltonian with an infinite wall at the origin We then recover the expression of E§5).

is Hq, with eigenenergie§| and eigenstateﬁ). When the
potential is symmetric with respect ¥=0, one simply has

(x|Ty=2(x|21 +1) and &, =g 41.

1. Equation for E,
The lower
correlatorg(w) = 1/f (w):

+ o

1
Bo=eot Im 35 2, (9(@)=go(®))

X (0| X(— wq)X(wy)|0), (B1)

“energy” Eq is a functional of the inverse

Note that the following sum rules have been used in the
main text:

256§ -
— a L= y
72 =0

256 5 a? 57
w2 =0 b T4 12 (B7)
2. Equation for E;

The “energy” E, is also a functional of the inverse cor-

relatorf;(w) = 1/f(a)):
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A +oo We can again make this result more explicit for both consid-

E;=gp+ lim ,3 Z 9(w,) — go(wn)) ered guantum systems: the harmonic oscillator of frequency
Bt N, g;=N(21+2), d,=2\l, andm, = \/c;, which leads to the
X(6|X(—wn)X(wn)|@), (B8) expressions of Eq422)—(25); and the particle in a box of

width 2b=m/kq. In this latter caseK is the Fourier trans-

wherek=g, ! has been defined in E(B2). Let us now in- form of the two-time correlator of the position of a particle in
a box of sizeb=m/2ky. It is then clear using E¢B5) that

troduce,
K(wp)=(0|X(— @) X(0n)|0), (B9) 3

“ 1. T
K(w)= l—6k(w/4) + 8_kc2) S w), (B12)

+ o

+ o ~ ~ ~ ~
=f 2 cosw, 7>, |(0]x[T)|2e~¢1#07dr
0 =0

the extra Dirac peak coming from the fact that the oper&tor
now has a finite average, as the particle belongs to the inter-
val [0,b]. This immediately leads to the formula of E&7),
usingk(0)= (15— 7?)/12k}.

K is the two-time correlator of the position of the quantum  When the constraint iX=X,, with X,= 7b (as in Sec.
particle in the presence of the wall. As beform,_g, VIl), the quantum particle now “lives” in a box of size (1
—&9, m=|(0|x|T)|. Note that, contrary to the calculation —7)b, and the expression foK is changed accordingly,
for Eq, thel =0 contribution in the sum above is nonzero soleading to

that, strictly speaking, this term should be written

< 2dm?

= —. B10
i=o d|2+wﬁ ( )

27rﬁ1§5(wn). This term has been written under this form in (1—n)* (1-7)2 73
the main text. K(w)= R( w + == (1+7)%8(w).
Finally, the general expression Bf; reads 16 4 8Kkp

(B13)

- 1 (+= 1 1 \.
Ei=egt s— (A——A—> K(x)dx. (B11)

2mlo \f(x) k(%) This immediately leads to the result of E§9).
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